Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

2-(1,3-Dithian-2-yl)benzaldehyde and N-\{2-[2-(1,3-dioxan-2-yl)phenoxy]ethyl\}phthalimide

Paul G. Jene and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA
Correspondence e-mail: ibers@chem.nwu.edu

Received 23 November 1999
Accepted 7 March 2000
The crystal structures of two elaborated-porphyrin precursors have been determined. In the crystalline state, 2-(1,3-dithian-2-yl)benzaldehyde, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{OS}_{2}$, has its dithiane ring in a slightly distorted chair conformation. The molecules pack in anti-parallel chains. N-\{2-[2-(1,3-Dioxan-2-yl)phenoxy]ethyl\}phthalimide, $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5}$, is in a folded conformation. The dihedral angle between the phthalimide and phenyl planes is 80.07 (3) ${ }^{\circ}$. In the crystalline states, molecules stack on top of one another.

Comment

Linked porphyrins have been used to model the photosynthetic reaction centers of Rhodopseudomonas viridis and Rhodobactersphaeroides (Clement et al., 1998; Kadish et al., 1998, and references therein). This laboratory has previously reported the structures of precursors for linked porphyrins, as well as their syntheses (Jene \& Ibers, 1999, and references therein). Capped porphyrins play important roles as models for protein active sites. There has been particular interest in porphyrin-based models of the heme active site (Momenteau \& Reed, 1994). This laboratory has synthesized and characterized a number of four-atom-linked capped porphyrins (Johnson et al., 1996), five-atom-linked capped porphyrins (Ma et al., 1993), five-plus-atom-linked capped porphyrins (Slebodnick et al., 1996), and their precursors (Jene et al., 1999). We report here the structures of two further related precursors, namely 2-(1,3-dithian-2-yl)benzaldehyde, (I), and N-\{2-[2-(1,3-dioxan-2-yl)phenoxy]ethyl\}phthalimide, (II).

(I)

(II)

Compound (I) (Fig. 1 and Table 1) is a precursor for a rigidly connected o-diporphyrinbenzene system with different

Figure 1
The structure of (I) showing 50\% displacement ellipsoids. H atoms are drawn as spheres of arbitrary radii.
porphyrins attached. The benzene ring is planar with a maximum deviation of 0.0126 (9) \AA for atom C1. The dithiane ring is in the chair conformation with the benzaldehyde moiety in the equatorial position. The $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{S}$ bond lengths are normal. The $\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$ angle of $114.16(14)^{\circ}$ is larger than both the tetrahedral value of 109.5° and the 111.3° angle in cyclohexane, but is in agreement with larger than expected values in similar systems (Kalff \& Romers, 1966). Torsion angles for the dithiane ring are listed in Table 1.

In the solid state, molecules of (I) pack in anti-parallel sheets. Each sheet is formed of parallel chains with a closest contact for $\mathrm{O} 1 \cdots \mathrm{H} 10 B(x, 1+y, z)$ of $2.74 \AA$ between molecules in a chain. The closest S-contact, S $1 \cdots \mathrm{H} 5 A$ at $3.10 \AA$, occurs between anti-parallel sheets. The relation between antiparallel chains involved in the contact is $1-x, 2-y, 1-z$. There is a 3.28 (1) \AA separation between benzene rings in opposite chains, and they are in a suitable position for π overlap.

Compound (II) (Fig. 2 and Table 2) is used in the synthesis of capped porphyrins containing N and O atoms at intermediate positions on the 'arms' linking the benzene 'cap' to the porphyrin. Compound (II) is a primary amine of the form $R \mathrm{NH}_{2}$, protected with phthalimide. The phthalimide group is

Figure 2
The structure of (II) showing 50% displacement ellipsoids. H atoms are drawn as spheres of arbitrary radii.
planar with a maximum deviation from the 11-atom mean plane of 0.020 (1) \AA for atom O2. The phenoxy group is planar with a maximum deviation of 0.016 (1) \AA for atom C11. The dihedral angle between the planes is $80.07(3)^{\circ}$. The twist in the molecule occurs along atoms $\mathrm{C} 9, \mathrm{C} 10$, and O 3 that link the two moieties. The acetal $\mathrm{C}-\mathrm{O}$ bond lengths in (II), $\mathrm{C} 17-\mathrm{O} 4$ and $\mathrm{C} 17-\mathrm{O} 5$, are equal within experimental error [average 1.411 (3) \AA]. This is consistent with the lack of hydrogen bonds to the acetal O atoms (Gandour et al., 1986). These CO bonds average 1.407 (10) Å in other reported unsubstituted (2,6-dioxahexyl)arenes (Gandour et al., 1986; De \& Kitagawa, 1991). Both in these compounds and in the present study, the 2,6-dioxahexyl rings have the chair conformation (see torsion angles in Table 2).

Molecules of (II) stack along the a axis (Fig. 3). Each molecule is shifted 6.020 (4) \AA from the molecule below it. The closest contact between molecules in the stack is $\mathrm{H} 9 A \cdots \mathrm{O} 5$ at $2.34 \AA$. The closest contact between columns is $\mathrm{H} 18 A \cdots \mathrm{H} 10 A\left(\frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z\right)$ at $2.55 \AA$.

Figure 3
Packing views of compound (II) down the a^{*} axis (left-hand side) and the b^{*} axis (right-hand side).

Experimental

1,3-Dithiane derivatives can be synthesized following the literature method of Marshall \& Belletire (1971). The melting point of compound (I) is $361.0-362.0 \mathrm{~K}$. Crystals of compound (II) were prepared according to the literature method of Sasaki et al. (1978) to protect the amino starting material with phthalimide. The melting point for compound (II) is $438.0-439.0 \mathrm{~K}$. Melting points were measured on a Mel-Temp melting point apparatus from Laboratory Instruments, Holliston, Massachusetts, USA.

Compound (I)

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{OS}_{2}$	$Z=2$
$M_{r}=224.33$	$D_{x}=1.407 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=6.6363(13) \AA$	Cell parameters from 2850
$b=8.1836(16) \AA$	reflections
$c=10.468(2) \AA$	$\theta=2.67-28.00^{\circ}$
$\alpha=70.68(3)^{\circ}$	$\mu=0.465 \mathrm{~mm}^{-1}$
$\beta=88.01(3)^{\circ}$	$T=153(2) \mathrm{K}$
$\gamma=80.77(3)^{\circ}$	Block, colorless
$V=529.45(18) \AA^{\circ}$	$0.46 \times 0.37 \times 0.30 \mathrm{~mm}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.407 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 28 \\
& \quad \text { reflections } \\
& \theta=2.67-28.00^{\circ} \\
& \mu=0.465 \mathrm{~mm}^{-1} \\
& T=153(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.46 \times 0.37 \times 0.30 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART 1000 CCD

diffractometer
ω scans
Absorption correction: numerical face-indexed (SHELXTL/PC; Sheldrick, 1997)
$T_{\text {min }}=0.845, T_{\text {max }}=0.896$
3410 measured reflections
2363 independent reflections
2201 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=28^{\circ}$
$h=-7 \rightarrow 8$
$k=-9 \rightarrow 10$
$l=-13 \rightarrow 14$
Intensity decay: <2\%

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.112$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+\left(0.04 F_{o}{ }^{2}\right)^{2}\right]$
$(\Delta / \sigma)_{\max }=0.001$
$S=2.07$
2363 reflections
127 parameters
$\Delta \rho_{\max }=0.66$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.31 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I).

S1-C8	$1.8198(15)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.525(2)$
$\mathrm{S} 2-\mathrm{C} 8$	$1.8233(15)$	$\mathrm{C} 1-\mathrm{C} 8$	$1.5118(19)$
$\mathrm{S} 1-\mathrm{C} 9$	$1.8113(17)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.479(2)$
S2-C11	$1.8161(16)$	$\mathrm{C} 7-\mathrm{O} 1$	$1.2080(18)$
$\mathrm{C} 9-\mathrm{C} 10$	$1.523(3)$		
$\mathrm{C} 9-\mathrm{S} 1-\mathrm{C} 8$	$97.89(8)$	$\mathrm{C} 1-\mathrm{C} 8-\mathrm{S} 1$	$110.48(10)$
$\mathrm{C} 11-\mathrm{S} 2-\mathrm{C} 8$	$97.73(8)$	$\mathrm{C} 1-\mathrm{C} 8-\mathrm{S} 2$	$108.61(10)$
C2-C1-C8	$119.79(13)$	$\mathrm{S} 1-\mathrm{C} 8-\mathrm{S} 2$	$113.06(8)$
C6-C1-C8	$121.80(13)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{S} 1$	$114.74(12)$
C5-C6-C7	$115.14(12)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$114.16(14)$
C1-C6-C7	$125.22(13)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{S} 2$	$114.07(12)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$	$128.29(13)$		
C8-C1-C9-C10	$41.9(2)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{S} 2-\mathrm{C} 8$	$-59.84(14)$
C1-C9-C10-C11	$-36.58(15)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$177.00(19)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{S} 2$	$64.50(18)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$172.00(18)$

Compound (II)

Crystal data
$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5}$
$M_{r}=353.36$
Monoclinic, $P 2_{1} / n$
$a=6.0200$ (4) \AA
$b=15.0289(11) \AA$
$c=18.9660$ (13) \AA
$\beta=94.841$ (1) ${ }^{\circ}$
$V=1709.8(2) \AA^{3}$
$Z=4$

Data collection

Bruker SMART 1000 CCD
diffractometer
ω scans
Absorption correction: numerical
face-indexed (SHELXTL/PC;
Sheldrick, 1997)
$T_{\text {min }}=0.967, T_{\text {max }}=0.994$
11075 measured reflections
$D_{x}=1.373 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2806 reflections
$\theta=2.55-27.74^{\circ}$
$\mu=0.099 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Square prism, colorless
$0.47 \times 0.12 \times 0.06 \mathrm{~mm}$

4034 independent reflections 2314 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=28^{\circ}$
$h=-7 \rightarrow 8$
$k=-19 \rightarrow 18$
$l=-24 \rightarrow 24$
Intensity decay: $<2 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.096$
$S=1.04$
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+\left(0.03 F_{o}{ }^{2}\right)^{2}\right]$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.25 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$
4034 reflections
235 parameters

Table 2
Selected geometric parameters ($\left({ }^{\circ},^{\circ}\right)$ for (II).

O1-C7			
O2-C8	$1.209(2)$	O3-C11	$1.3632(19)$
N1-C7	$1.2070(19)$	C16-C17	$1.498(2)$
C6-C7	$1.388(2)$	O4-C17	$1.4085(19)$
C1-C8	$1.491(2)$	O4-C18	$1.4297(19)$
N1-C8	$1.484(2)$	C18-C19	$1.503(2)$
N1-C9	$1.397(2)$	C19-C20	$1.506(3)$
C9-C10	$1.454(2)$	O5-C20	$1.438(2)$
O3-C10	$1.505(2)$	O5-C17	$1.4132(19)$
C11-O3-C10	$1.432(2)$		
C7-N1-C9	$117.74(14)$	N1-C9-C10	$111.57(14)$
C8-N1-C9	$123.90(15)$	O3-C10-C9	$106.81(14)$
C2-C1-C8	$123.69(14)$	O3-C11-C12	$123.90(17)$
C5-C6-C7	$129.82(17)$	O3-C11-C16	$115.33(16)$
C1-C6-C7	$130.61(16)$	C15-C16-C17	$120.71(16)$
N1-C7-C6	$107.74(15)$	C11-C16-C17	$120.92(16)$
C7-N1-C8	$105.81(15)$	O4-C17-O5	$111.13(14)$
N1-C8-C1	$112.37(15)$	O4-C17-C16	$107.72(14)$
C6-C1-C8	$105.26(15)$	O5-C17-C16	$109.06(14)$
O1-C7-N1	$108.79(15)$	C17-O4-C18	$111.48(13)$
O1-C7-C6	$125.12(17)$	O4-C18-C19	$109.80(15)$
O2-C8-N1	$129.06(16)$	C18-C19-C20	$108.99(16)$
O2-C8-C1	$125.56(17)$	O5-C20-C19	$110.32(15)$
	$129.18(17)$	C17-O5-C20	$110.82(13)$
C7-N1-C9-C10	$-75.2(2)$	C17-O4-C18-C19	$58.16(19)$
N1-C9-C10-O3	$-58.87(18)$	O4-C18-C19-C20	$-53.9(2)$
C9-C10-O3-C11	$162.18(14)$	C18-C19-C20-O5	$53.8(2)$
C10-O3-C11-C16	$-169.17(15)$	C19-C20-O5-C17	$-57.2(2)$

H atoms were placed at calculated positions and refined with a riding model (methylene $\mathrm{C}-\mathrm{H}=0.99 \AA$, methine $\mathrm{C}-\mathrm{H}=1.00 \AA$ and aromatic $\mathrm{C}-\mathrm{H}=0.95 \AA$). The $U_{\text {iso }}$ value for a given H atom was assigned as 1.2 times $U_{\text {iso }}$ of the atom to which it is attached.

For both compounds, data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990);
program(s) used to refine structure: SHELXTL/PC (Sheldrick, 1997); molecular graphics: SHELXTL/PC; software used to prepare material for publication: SHELXTL/PC.

This research was supported by National Institutes of Health grant No. HL 13157 and an IMGIP fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1516). Services for accessing these data are described at the back of the journal.

References

Bruker (1999). SMART (Version 5.054) and SAINT-Plus (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Clement, T. E., Nurco, D. J. \& Smith, K. M. (1998). Inorg. Chem. 37, 11501160.

De, A. \& Kitagawa, Y. (1991). Acta Cryst. C47, 2179-2181.
Gandour, R. D., Tirado-Rives, J. \& Fronczek, F. R. (1986). J. Org. Chem. 51, 1987-1991.
Jene, P. G., Chan, D. C., Cooke, B. L. \& Ibers, J. A. (1999). Acta Cryst. C55, 801-806.
Jene, P. G. \& Ibers, J. A. (1999). Acta Cryst. C55, 1593-1595.
Johnson, M. R., Seok, W. K., Ma, W., Slebodnick, C., Wilcoxen, K. M. \& Ibers, J. A. (1996). J. Org. Chem. 61, 3298-3303.

Kadish, K. M., Guo, N., Van Caemelbecke, E., Froiio, A., Paolesse, R., Monti, D., Tagliatesta, P., Boschi, T., Prodi, L., Bolletta, F. \& Zaccheroni, N. (1998). Inorg. Chem. 37, 2358-2365.
Kalff, H. T. \& Romers, C. (1966). Acta Cryst. 20, 490-496.
Ma, W., Slebodnick, C. \& Ibers, J. A. (1993). J. Org. Chem. 58, 6349-6353.
Marshall, J. A. \& Belletire, J. L. (1971). Tetrahedron Lett. pp. 871-874.
Momenteau, M. \& Reed, C. A. (1994). Chem. Rev. 94, 659-698.
Sasaki, T., Minamoto, K. \& Itoh, H. (1978). J. Org. Chem. 43, 2320-2325.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXTL/PC. Version 5.101. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Slebodnick, C., Fettinger, J. C., Peterson, H. B. \& Ibers, J. A. (1996). J. Am. Chem. Soc. 118, 3216-3224.

